Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil.

Identifieur interne : 001154 ( Main/Exploration ); précédent : 001153; suivant : 001155

The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil.

Auteurs : Waled Suliman [États-Unis] ; James B. Harsh [États-Unis] ; Nehal I. Abu-Lail [États-Unis] ; Ann-Marie Fortuna [États-Unis] ; Ian Dallmeyer [États-Unis] ; Manuel Garcia-Pérez [États-Unis]

Source :

RBID : pubmed:27627689

Abstract

This paper reports studies to elucidate the potential relationships between porosity and surface functionality of biochar and soil water retention characteristics. The biochars studied were produced from pine wood (PW), hybrid poplar wood (HP), and pine bark (PB) at temperatures of 350°C and 600°C. The resulting materials were then oxidized under air at 250°C to generate oxygenated functional groups on the surface. All biochar were thoroughly characterized (surface and bulk properties) and their hydrological properties measured in blends with Quincy sand. We prepared 39 microcosms for this study to examine the effect of biochar functionalities and porosity on the hydro-physical properties of Quincy sand. Each biochar was thoroughly mixed with the soil at 20gkg-1. The field capacity, wilting point, and total available soil moisture of the bio-char/Quincy sand mixtures were measured for both dry and wet ranges. The soil water potentials and soil water contents were fitted using the model of van Genuchten. Our results indicated that the amount of oxygenated functional groups on the surface of biochars clearly differentiated the biochars in terms of hydrophilicity, with the oxidized biochars being superior, followed by the low-temperature biochars, while the high temperature biochars possessed lowest hydrophilicity. As a result, oxidized biochars exhibited better wettability compared to unoxidized biochars, regardless their feedstock source. Significant correlation occurred between the total acidic functional groups on biochar surface and water contents at different matric potentials. Over a wide range of soil water potentials, oxidized biochar-soil mixtures held more water than the unoxidized biochar-soil mixtures except in the region between -0.1 and -5kPa of ψ, which is near saturation. Soil water contents at different matric potentials were significantly inter-correlated (P<0.01) and correlated with bulk densities of biochar-amended soil samples.

DOI: 10.1016/j.scitotenv.2016.09.025
PubMed: 27627689


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil.</title>
<author>
<name sortKey="Suliman, Waled" sort="Suliman, Waled" uniqKey="Suliman W" first="Waled" last="Suliman">Waled Suliman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harsh, James B" sort="Harsh, James B" uniqKey="Harsh J" first="James B" last="Harsh">James B. Harsh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abu Lail, Nehal I" sort="Abu Lail, Nehal I" uniqKey="Abu Lail N" first="Nehal I" last="Abu-Lail">Nehal I. Abu-Lail</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fortuna, Ann Marie" sort="Fortuna, Ann Marie" uniqKey="Fortuna A" first="Ann-Marie" last="Fortuna">Ann-Marie Fortuna</name>
<affiliation wicri:level="2">
<nlm:affiliation>Soil Science Department, North Dakota State University, Fargo, ND 58108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil Science Department, North Dakota State University, Fargo, ND 58108</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dallmeyer, Ian" sort="Dallmeyer, Ian" uniqKey="Dallmeyer I" first="Ian" last="Dallmeyer">Ian Dallmeyer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia Perez, Manuel" sort="Garcia Perez, Manuel" uniqKey="Garcia Perez M" first="Manuel" last="Garcia-Pérez">Manuel Garcia-Pérez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA. Electronic address: mgarcia-perez@wsu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27627689</idno>
<idno type="pmid">27627689</idno>
<idno type="doi">10.1016/j.scitotenv.2016.09.025</idno>
<idno type="wicri:Area/Main/Corpus">001628</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001628</idno>
<idno type="wicri:Area/Main/Curation">001628</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001628</idno>
<idno type="wicri:Area/Main/Exploration">001628</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil.</title>
<author>
<name sortKey="Suliman, Waled" sort="Suliman, Waled" uniqKey="Suliman W" first="Waled" last="Suliman">Waled Suliman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harsh, James B" sort="Harsh, James B" uniqKey="Harsh J" first="James B" last="Harsh">James B. Harsh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abu Lail, Nehal I" sort="Abu Lail, Nehal I" uniqKey="Abu Lail N" first="Nehal I" last="Abu-Lail">Nehal I. Abu-Lail</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fortuna, Ann Marie" sort="Fortuna, Ann Marie" uniqKey="Fortuna A" first="Ann-Marie" last="Fortuna">Ann-Marie Fortuna</name>
<affiliation wicri:level="2">
<nlm:affiliation>Soil Science Department, North Dakota State University, Fargo, ND 58108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil Science Department, North Dakota State University, Fargo, ND 58108</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dallmeyer, Ian" sort="Dallmeyer, Ian" uniqKey="Dallmeyer I" first="Ian" last="Dallmeyer">Ian Dallmeyer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia Perez, Manuel" sort="Garcia Perez, Manuel" uniqKey="Garcia Perez M" first="Manuel" last="Garcia-Pérez">Manuel Garcia-Pérez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA. Electronic address: mgarcia-perez@wsu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Science of the total environment</title>
<idno type="eISSN">1879-1026</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper reports studies to elucidate the potential relationships between porosity and surface functionality of biochar and soil water retention characteristics. The biochars studied were produced from pine wood (PW), hybrid poplar wood (HP), and pine bark (PB) at temperatures of 350°C and 600°C. The resulting materials were then oxidized under air at 250°C to generate oxygenated functional groups on the surface. All biochar were thoroughly characterized (surface and bulk properties) and their hydrological properties measured in blends with Quincy sand. We prepared 39 microcosms for this study to examine the effect of biochar functionalities and porosity on the hydro-physical properties of Quincy sand. Each biochar was thoroughly mixed with the soil at 20gkg
<sup>-1</sup>
. The field capacity, wilting point, and total available soil moisture of the bio-char/Quincy sand mixtures were measured for both dry and wet ranges. The soil water potentials and soil water contents were fitted using the model of van Genuchten. Our results indicated that the amount of oxygenated functional groups on the surface of biochars clearly differentiated the biochars in terms of hydrophilicity, with the oxidized biochars being superior, followed by the low-temperature biochars, while the high temperature biochars possessed lowest hydrophilicity. As a result, oxidized biochars exhibited better wettability compared to unoxidized biochars, regardless their feedstock source. Significant correlation occurred between the total acidic functional groups on biochar surface and water contents at different matric potentials. Over a wide range of soil water potentials, oxidized biochar-soil mixtures held more water than the unoxidized biochar-soil mixtures except in the region between -0.1 and -5kPa of ψ, which is near saturation. Soil water contents at different matric potentials were significantly inter-correlated (P<0.01) and correlated with bulk densities of biochar-amended soil samples.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27627689</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1026</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>574</Volume>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Science of the total environment</Title>
<ISOAbbreviation>Sci Total Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil.</ArticleTitle>
<Pagination>
<MedlinePgn>139-147</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0048-9697(16)31942-8</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.scitotenv.2016.09.025</ELocationID>
<Abstract>
<AbstractText>This paper reports studies to elucidate the potential relationships between porosity and surface functionality of biochar and soil water retention characteristics. The biochars studied were produced from pine wood (PW), hybrid poplar wood (HP), and pine bark (PB) at temperatures of 350°C and 600°C. The resulting materials were then oxidized under air at 250°C to generate oxygenated functional groups on the surface. All biochar were thoroughly characterized (surface and bulk properties) and their hydrological properties measured in blends with Quincy sand. We prepared 39 microcosms for this study to examine the effect of biochar functionalities and porosity on the hydro-physical properties of Quincy sand. Each biochar was thoroughly mixed with the soil at 20gkg
<sup>-1</sup>
. The field capacity, wilting point, and total available soil moisture of the bio-char/Quincy sand mixtures were measured for both dry and wet ranges. The soil water potentials and soil water contents were fitted using the model of van Genuchten. Our results indicated that the amount of oxygenated functional groups on the surface of biochars clearly differentiated the biochars in terms of hydrophilicity, with the oxidized biochars being superior, followed by the low-temperature biochars, while the high temperature biochars possessed lowest hydrophilicity. As a result, oxidized biochars exhibited better wettability compared to unoxidized biochars, regardless their feedstock source. Significant correlation occurred between the total acidic functional groups on biochar surface and water contents at different matric potentials. Over a wide range of soil water potentials, oxidized biochar-soil mixtures held more water than the unoxidized biochar-soil mixtures except in the region between -0.1 and -5kPa of ψ, which is near saturation. Soil water contents at different matric potentials were significantly inter-correlated (P<0.01) and correlated with bulk densities of biochar-amended soil samples.</AbstractText>
<CopyrightInformation>Copyright © 2016 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Suliman</LastName>
<ForeName>Waled</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harsh</LastName>
<ForeName>James B</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abu-Lail</LastName>
<ForeName>Nehal I</ForeName>
<Initials>NI</Initials>
<AffiliationInfo>
<Affiliation>The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fortuna</LastName>
<ForeName>Ann-Marie</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Soil Science Department, North Dakota State University, Fargo, ND 58108, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dallmeyer</LastName>
<ForeName>Ian</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Garcia-Pérez</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA. Electronic address: mgarcia-perez@wsu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Sci Total Environ</MedlineTA>
<NlmUniqueID>0330500</NlmUniqueID>
<ISSNLinking>0048-9697</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Hydrological properties of biochar</Keyword>
<Keyword MajorTopicYN="N">Oxidized biochar</Keyword>
<Keyword MajorTopicYN="N">Quincy sand</Keyword>
<Keyword MajorTopicYN="N">Soil water retention</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>09</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27627689</ArticleId>
<ArticleId IdType="pii">S0048-9697(16)31942-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.scitotenv.2016.09.025</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Dakota du Nord</li>
<li>Washington (État)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Suliman, Waled" sort="Suliman, Waled" uniqKey="Suliman W" first="Waled" last="Suliman">Waled Suliman</name>
</region>
<name sortKey="Abu Lail, Nehal I" sort="Abu Lail, Nehal I" uniqKey="Abu Lail N" first="Nehal I" last="Abu-Lail">Nehal I. Abu-Lail</name>
<name sortKey="Dallmeyer, Ian" sort="Dallmeyer, Ian" uniqKey="Dallmeyer I" first="Ian" last="Dallmeyer">Ian Dallmeyer</name>
<name sortKey="Fortuna, Ann Marie" sort="Fortuna, Ann Marie" uniqKey="Fortuna A" first="Ann-Marie" last="Fortuna">Ann-Marie Fortuna</name>
<name sortKey="Garcia Perez, Manuel" sort="Garcia Perez, Manuel" uniqKey="Garcia Perez M" first="Manuel" last="Garcia-Pérez">Manuel Garcia-Pérez</name>
<name sortKey="Harsh, James B" sort="Harsh, James B" uniqKey="Harsh J" first="James B" last="Harsh">James B. Harsh</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001154 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001154 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27627689
   |texte=   The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27627689" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020